16 research outputs found

    Improving Neural Topic Models with Wasserstein Knowledge Distillation

    Full text link
    Topic modeling is a dominant method for exploring document collections on the web and in digital libraries. Recent approaches to topic modeling use pretrained contextualized language models and variational autoencoders. However, large neural topic models have a considerable memory footprint. In this paper, we propose a knowledge distillation framework to compress a contextualized topic model without loss in topic quality. In particular, the proposed distillation objective is to minimize the cross-entropy of the soft labels produced by the teacher and the student models, as well as to minimize the squared 2-Wasserstein distance between the latent distributions learned by the two models. Experiments on two publicly available datasets show that the student trained with knowledge distillation achieves topic coherence much higher than that of the original student model, and even surpasses the teacher while containing far fewer parameters than the teacher's. The distilled model also outperforms several other competitive topic models on topic coherence.Comment: Accepted at ECIR 202

    Do Neural Topic Models Really Need Dropout? Analysis of the Effect of Dropout in Topic Modeling

    Full text link
    Dropout is a widely used regularization trick to resolve the overfitting issue in large feedforward neural networks trained on a small dataset, which performs poorly on the held-out test subset. Although the effectiveness of this regularization trick has been extensively studied for convolutional neural networks, there is a lack of analysis of it for unsupervised models and in particular, VAE-based neural topic models. In this paper, we have analyzed the consequences of dropout in the encoder as well as in the decoder of the VAE architecture in three widely used neural topic models, namely, contextualized topic model (CTM), ProdLDA, and embedded topic model (ETM) using four publicly available datasets. We characterize the dropout effect on these models in terms of the quality and predictive performance of the generated topics.Comment: Accepted at EACL 202

    Improving Contextualized Topic Models with Negative Sampling

    Full text link
    Topic modeling has emerged as a dominant method for exploring large document collections. Recent approaches to topic modeling use large contextualized language models and variational autoencoders. In this paper, we propose a negative sampling mechanism for a contextualized topic model to improve the quality of the generated topics. In particular, during model training, we perturb the generated document-topic vector and use a triplet loss to encourage the document reconstructed from the correct document-topic vector to be similar to the input document and dissimilar to the document reconstructed from the perturbed vector. Experiments for different topic counts on three publicly available benchmark datasets show that in most cases, our approach leads to an increase in topic coherence over that of the baselines. Our model also achieves very high topic diversity.Comment: Accepted at 19th International Conference on Natural Language Processing (ICON 2022

    Segmenting Scientific Abstracts into Discourse Categories: A Deep Learning-Based Approach for Sparse Labeled Data

    Full text link
    The abstract of a scientific paper distills the contents of the paper into a short paragraph. In the biomedical literature, it is customary to structure an abstract into discourse categories like BACKGROUND, OBJECTIVE, METHOD, RESULT, and CONCLUSION, but this segmentation is uncommon in other fields like computer science. Explicit categories could be helpful for more granular, that is, discourse-level search and recommendation. The sparsity of labeled data makes it challenging to construct supervised machine learning solutions for automatic discourse-level segmentation of abstracts in non-bio domains. In this paper, we address this problem using transfer learning. In particular, we define three discourse categories BACKGROUND, TECHNIQUE, OBSERVATION-for an abstract because these three categories are the most common. We train a deep neural network on structured abstracts from PubMed, then fine-tune it on a small hand-labeled corpus of computer science papers. We observe an accuracy of 75% on the test corpus. We perform an ablation study to highlight the roles of the different parts of the model. Our method appears to be a promising solution to the automatic segmentation of abstracts, where the labeled data is sparse.Comment: to appear in the proceedings of JCDL'202

    Generation of Highlights from Research Papers Using Pointer-Generator Networks and SciBERT Embeddings

    Full text link
    Nowadays many research articles are prefaced with research highlights to summarize the main findings of the paper. Highlights not only help researchers precisely and quickly identify the contributions of a paper, they also enhance the discoverability of the article via search engines. We aim to automatically construct research highlights given certain segments of the research paper. We use a pointer-generator network with coverage mechanism and a contextual embedding layer at the input that encodes the input tokens into SciBERT embeddings. We test our model on a benchmark dataset, CSPubSum and also present MixSub, a new multi-disciplinary corpus of papers for automatic research highlight generation. For both CSPubSum and MixSub, we have observed that the proposed model achieves the best performance compared to related variants and other models proposed in the literature. On the CSPubSum data set, our model achieves the best performance when the input is only the abstract of a paper as opposed to other segments of the paper. It produces ROUGE-1, ROUGE-2 and ROUGE-L F1-scores of 38.26, 14.26 and 35.51, respectively, METEOR F1-score of 32.62, and BERTScore F1 of 86.65 which outperform all other baselines. On the new MixSub data set, where only the abstract is the input, our proposed model (when trained on the whole training corpus without distinguishing between the subject categories) achieves ROUGE-1, ROUGE-2 and ROUGE-L F1-scores of 31.78, 9.76 and 29.3, respectively, METEOR F1-score of 24.00, and BERTScore F1 of 85.25, outperforming other models.Comment: 18 pages, 7 figures, 7 table

    An overview of device-to-device communication in cellular networks

    No full text
    Device-to-device (D2D) communication is expected to play a significant role in upcoming cellular networks as it promises ultra-low latency for communication among users. This new mode may operate in licensed or unlicensed spectrum. It is a novel addition to the traditional cellular communication paradigm. Its benefits are, however, accompanied by many technical and business issues that must be resolved before integrating it into the cellular ecosystem. This paper discusses the main characteristics of D2D communication including its usage scenarios, architecture, technical features, and areas of active research. Keywords: Device-to-device communication (D2D), Cellular network, 5G, Resource management, LTE direc

    Dimensionality reduction of EEG signal using Fuzzy Discernibility Matrix.

    No full text
    2017 10th International Conference on Human System Interactions (HSI)131-13

    Discernibility matrix based dimensionality reduction for EEG signal

    No full text
    10.1109/tencon.2016.7848530TENCON 2016 - 2016 IEEE Region 10 Conferenc
    corecore